Transgelin-expressing myofibroblasts orchestrate ventral midline closure through TGFβ signalling
نویسندگان
چکیده
Ventral body wall (VBW) defects are among the most common congenital malformations, yet their embryonic origin and underlying molecular mechanisms remain poorly characterised. Transforming growth factor beta (TGFβ) signalling is essential for VBW closure, but the responding cells are not known. Here, we identify in mouse a population of migratory myofibroblasts at the leading edge of the closing VBW that express the actin-binding protein transgelin (TAGLN) and TGFβ receptor (TGFβR). These cells respond to a temporally regulated TGFβ2 gradient originating from the epithelium of the primary body wall. Targeted elimination of TGFβR2 in TAGLN+ cells impairs midline closure and prevents the correct subsequent patterning of the musculature and skeletal components. Remarkably, deletion of Tgfbr2 in myogenic or chondrogenic progenitor cells does not manifest in midline defects. Our results indicate a pivotal significance of VBW myofibroblasts in orchestrating ventral midline closure by mediating the response to the TGFβ gradient. Altogether, our data enable us to distinguish highly regulated epithelial-mesenchymal signalling and successive cellular migration events in VBW closure that explain early morphological changes underlying the development of congenital VBW defects.
منابع مشابه
Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2.
Smooth muscle-22α (SM22α), encoded by transgelin (TAGLN), is expressed in mesenchymal lineage cells, including myofibroblasts and smooth muscle cells. It is an F-actin binding protein that regulates the organization of actin cytoskeleton, cellular contractility and motility. SM22α is crucial for the maintenance of smooth muscle cell phenotype and its function. SM22α is also expressed in the pro...
متن کاملProstate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes
Changes within interstitial stromal compartments often accompany carcinogenesis, and this is true of prostate cancer. Typically, the tissue becomes populated by myofibroblasts that can promote progression. Not all myofibroblasts exhibit the same negative influence, however, and identifying the aggressive form of myofibroblast may provide useful information at diagnosis. A means of molecularly d...
متن کاملCell-cycle-dependent TGFβ-BMP antagonism regulates neural tube closure by modulating tight junctions.
Many organs form by invaginating and rolling flat epithelial cell sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. Here, we show...
متن کاملTransforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis
Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cad...
متن کاملA multiplex role for FOXA2 and SHH in floor plate specification and midbrain pattern formation
Many organs form by invaginating and rolling flat epithelial cell-sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. We show that ...
متن کامل